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Abstract. Exclusive processes at large momentum transfer Q factor into perturbatively calculable short-
distance parts and long-distance hadronic wave functions. Usually, only contributions from the leading
Fock states have to be included to leading order in 1/Q. We show that for exclusive decays of P -wave
quarkonia the contribution from the next-higher Fock state |QQg〉 contributes at the same order in 1/Q.
We investigate how the constituent gluon attaches to the hard process in order to form colour-singlet
final-state hadrons and argue that a single additional long-distance factor is sufficient to parametrize
the size of its contribution. Incorporating transverse degrees of freedom and Sudakov factors, our results
are perturbatively stable in the sense that soft phase-space contributions are largely suppressed. Explicit
calculations yield good agreement with data on χcJ decays into pairs of pions, kaons, and etas. We also
comment on J/ψ decays into two pions.

1 Introduction

Exclusive reactions at large momentum transfer Q can be
calculated in perturbative QCD (pQCD) owing to a fac-
torization theorem [1], which separates the short-distance
physics of the partonic subreactions at the scale Q from
the longer-distance physics associated with the binding of
the partons inside the hadrons. The full amplitude is given
as a sum of terms, where each term factors into two parts,
a hard-scattering amplitude TH , calculable in perturba-
tive QCD, and wave functions ψ(xi,k⊥i) for each hadron
H. The importance of the various terms depends on their
scaling with 1/Q. For the contribution with the weakest
fall-off with Q (leading-twist contribution), the amplitude
TH describes the scattering of clusters of collinear partons
from the hadron and is given by valence-parton scatterings
only. Hence the only non-perturbative input required are
the distribution amplitudes φH(xi, Q) for finding valence
quarks in the hadron, each carrying some fraction xi of the
hadron’s momentum. The distribution amplitudes repre-
sent wave functions integrated over transverse momentum
k⊥ up to a factorization scale µF of order Q.

Corrections to this standard hard-scattering approach
(sHSA) (lowest-order in αs(Q) calculations in the collinear
approximation using valence Fock states only) can be of
perturbative origin (∝ αs(Q)) or power-like (∝ 1/Q). The
latter may be classified as follows:

1. Corrections arising from the overlap of the soft wave
functions.
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2. Corrections associated with the transverse momentum
of the partons inside the hadrons.

3. Corrections from higher Fock states.

In order to show that predictions of the sHSA are reliable,
two conditions have to be met. First, one has to prove that
both theO(αs(Q)) corrections and the 1/Q corrections are
small. Second, one has to ensure that the perturbative cal-
culation of TH does not receive major contributions from
phase space regions, where the virtualities of the inter-
nal partons become soft and perturbation theory is not
applicable [2].

In recent years there has been progress in our under-
standing which of the above-mentioned corrections are im-
portant. On the one hand, the HSA has been modified
through the incorporation of tranverse degrees of freedom
and gluonic radiative corrections in form of a Sudakov
factor [3]. Within this modified hard-scattering approach
(mHSA), the perturbative contribution to exclusive ob-
servables can be calculated self-consistently, because the
Sudakov factor suppresses contributions from soft phase-
space regions. In particular, the mHSA provides a descrip-
tion of the pion–photon transition form factor, which is
both reliable and in agreement with data, already at mo-
mentum transfers as low as 1 GeV [4–6].

On the other hand, the overlap of the initial- and final-
state pion wave functions, representing a soft contribution
of higher-twist type, is still sizeable in the few GeV region
in the calculation of the pion elastic form factor and just
suffices to fill the gap between the perturbative predic-
tion and the experimental data [7,4]. Since the overlap
contribution, while commonly neglected, is an essential
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ingredient of the HSA [1], the smallness of the perturba-
tive contribution to the pion form factor should not be
regarded as a failure but rather as consistent within the
entire approach.

In a recent paper [8] we have shown that the hierar-
chy of the 1/Q expansion for exclusive decays of heavy
quarkonia is different from the canonical one: for P -wave
states, the contribution from the next-higher Fock state is
not suppressed by additional powers of 1/Q compared to
the contribution from the leading Fock state. (Q is of the
order of the heavy-quark mass mc.) This is analogous to
the case of inclusive decays of heavy quarkonia, although
there the long-distance matrix elements are organized into
a hierarchy according to their scaling with v, the typical
velocity of the heavy quark in the quarkonium [9].

For the P -wave charmonium state χcJ , the Fock-state
expansion starts as

|χcJ(J++)〉 = O(1) |cc1(3PJ)〉+O(v) |cc8(3S1) g〉+O(v2) ,
(1.1)

where the subscript c specifies whether the ccc is in a
colour-singlet (c = 1) or colour-octet (c = 8) state. The
angular-momentum state of the cc pair is denoted by the
spectroscopic notation 2S+1LJ . Contrary to the case of
S-wave decays, two 4-fermion operators contribute to the
decay rate of P -wave states into light hadrons at leading
order in v

Γ [χcJ → LH] =
c1
m4

c
〈χcJ |O1(3PJ)|χcJ〉 (1.2)

+
c8
m2

c
〈χcJ |O8(3S1)|χcJ〉 +O(v2Γ ) .

The term involving the colour-singlet matrix element is
the one familiar from the quark-potential model. Indeed,
up to corrections of order v2, one has 〈χcJ |O1(3PJ)|χcJ〉 =
9|R′

P (0)|2/(2π). The decays of P -wave (and higher orbital-
angular-momentum states) probe components of the
quarkonium wave function that involve dynamical glu-
ons. However, the contribution to the inclusive annihila-
tion rate from the higher Fock state |ccg〉 is parametrized
through a single number, namely the expectation value of
the octet operator between the χcJ state, i.e. the colour-
octet matrix element in (1.2).

Consider now the case of exclusive decays of χcJ . For
definiteness take χcJ → ππ and define the amplitude MJ

for J = 0, 2 through

Γ [χcJ → ππ] =
aJ
mc

|MJ |2 , (1.3)

where the aJ are real numbers. The amplitude is the
sum of a colour-singlet and a colour-octet part, MJ =
M

(1)
J + M

(8)
J , corresponding to the leading and the sub-

leading Fock state in (1.1), respectively. The singlet ampli-
tude factors into the hard amplitude T (1)

HJ describing the
subprocess

cc1(3PJ) → qq′
1(

1S0) + q′q1(
1S0) (1.4)

and the wave functions for the leading Fock states of the
two pions and the χcJ . The χcJ wave function can be

taken in the non-relativistic limit, in which the charm
(anticharm) momentum is given by 1

2p ± K and terms
linear in the relative momentum K have to be kept. The
only long-distance information required is hence the sin-
glet decay constant f (1)

J or, equivalently, the derivative
of the non-relativistic cc wave function at the origin in
coordinate space, R′

P (0) ∝ f
(1)
J

√
mc. The colour-singlet

amplitude thus takes on the form

M
(1)
J ∼ mc α

2
s(mc)

(
fπ
mc

)2
f

(1)
J

m2
c
I
(1)
J , (1.5)

where I(1)
J is a convolution of the pion distribution am-

plitudes with a hard kernel, I(1)
J =

∫
dxdyφπ(x)φπ(y)

·f (1)
J (x, y).

For the calculation of the colour-octet amplitude two
new ingredients enter, the octet wave function and the
problem of colour conservation. Consider the wave func-
tion of the |cc8g〉 state first. It is important to realize
that in the |cc8g〉 Fock state not only the cc pair is in a
colour-octet state, but also the three particles, c, c and
g, are in an S-state. Hence orbital angular momenta are
not involved and the transverse degrees of freedom can be
integrated over. Therefore, we only have to operate with
a distribution amplitude Φ(8)

J (z1, z2, z3) (z1 + z2 + z3 = 1,
where z1, z2, z3 are the plus light-cone fractions of c, c,
and g, respectively), that is, as usual, subject to the con-
dition

∫
dz1dz2Φ

(8)
J = 1, and an octet decay constant f (8)

J
for each J . The wave function of the χcJ meson’s colour-
octet component is then given by

tacc
2
f

(8)
J Φ

(8)
J (z1, z2, z3)S

(8)
Jν , (1.6)

where t = λ/2 is the Gell-Mann colour matrix, a the colour
of the gluon and ν its Lorentz index. In the following, we
will make the plausible assumption that the colour-octet
χcJ states differ only by their spin wave functions, i.e.
the distribution amplitudes as well as the decay constants
are assumed to be the same for all χcJ states, f (8)

J =
f (8). The covariant spin wave functions in (1.6) are readily
constructed

S
(8)
0ν =

1√
6

(p/ + M0) (pν/M0 − γν),

S
(8)
2ν =

1√
2

(p/ + M2) εµνγµ . (1.7)

Owing to the non-relativistic expansion we can em-
ploy several simplifications. First, the three partons of the
|ccg〉 Fock state can be taken to be collinear up to correc-
tions of order v. Then, the c and c three-momenta scale
as mcv and differ by at most mcv

2, i.e. z1 = z2 up to
O(v2). And finally, the gluon momentum |k| is peaked at
a value of the order of the binding energy ε = Mc − 2mc,
where Mc is the average charmonium mass. Hence we
can assume a δ-function-like ccg distribution amplitude,
z1 = z2 = (1 − z)/2, z3 = z, where z ' ε/Mc ' 0.15.
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Therefore, analogously to the singlet case, the only long-
distance information on the octet wave function that en-
ters the final result is the octet decay constant f (8). Iden-
tifying the binding energy with mcv

2 (v2 ∼ 0.3), we find
z3 ∼ v2/2 ∼ 0.15, in accordance with the above estimate.1

Next consider the problem of colour conservation. The
obvious solution to colour conservation seems to be to de-
mand one of the final-state pions to be also in a higher
Fock state. The Fock-state expansion of the pion is gov-
erned by the ratio of the QCD scale and the hard scale
Q ∼ mc of the process, λ = ΛQCD/Q. The (multipole-
based) Fock-state expansion of the pion starts as follows

|π(0−+)〉 = O(1) |qq1(
1S0)〉 +O(λ) |qq8(

1P1)g〉 (1.8)
+O(λ2)

{|qq8(
3S1)g〉 + . . .

}
+O(λ3) .

Both octet terms give corrections of the same order λ2

with respect to the leading one: the extra suppression of
the magnetic dipole transition for 3S1 (λ2 rather than λ
as for an electric dipole transition) is compensated by the
suppression ∝ λ of P -wave production. The octet ampli-
tude will then look as follows:

M
(8)
J [1P1] ∼ mc α

2
s(mc)

fπ
mc

f
(P,8)
π

m2
c

f (8)

m2
c

I
(P,8)
J

mcλ2

M
(8)
J [3S1] ∼ mc α

2
s(mc)

fπ
mc

f
(S,8)
π

m3
c

f (8)

m2
c

I
(S,8)
J

λ2 , (1.9)

where I(8)
J is a convolution of the hard process

cc8(3S1) → qq′
8(

1P1,
3S1) + q′q1(

1S0) , (1.10)

the ordinary pion distribution amplitude and the distri-
bution amplitude for the higher Fock states of the pion.
We have indicated the extra suppression of these higher
Fock states by assuming the octet decay constant to scale
as f (P,8)

π ∼ λfπ, f
(S,8)
π ∼ λ2fπ, and indicated explicitly

the extra suppression of P -wave production. The factor
λ2 (∝ 1/m2

c) appears as a consequence of this particu-
lar solution of colour conservation: the constituent gluon
merely acts as a spectator which runs from the χcJ to one
of the pions without changing its momentum.

Yet, we disregard this possibility of colour conserva-
tion for the following two reasons. First, it requires the
specification of two new distribution amplitudes for the
two higher Fock states of the pion. Second, the Fock-state
expansion (1.8) for the pion might be badly convergent.
Even if a Fock-state expansion existed, it need not obey
the usual multipole expansion assumed in (1.8). If we do
not want to work with explicit higher Fock components
of the pion, we have to answer two questions: what the
constituent gluon of the |ccg〉 state couples to, and what
determines the probability, i.e. what the analogue of the

1 Since we are working to lowest order in the v-expansion we
may simply take pc,c = z1,2p, k = z3p in the actual calculation;
the amount of off-shellness is p2

c −m2
c ∼ m2

cv
2 and k2 ∼ m2

cv
4.

Correspondingly, the gluon has three polarization states, cf.
(1.7)

charmonium f (8) is on the pion side. To this end we invoke
two assumptions.

First, we take QCD perturbation theory to be valid
down to virtualities of the order of zm2

c ∼ (mcv)2 (see
Figs. 4 and 5 and Appendix). Then we can attach the
gluon of the |cc8g〉 state (in all possible ways and with a
coupling αsoft

s ) to the hard process leading to the Feynman
diagrams shown in Figs. 4 and 5. Thus the hard process is

cc8(3S1)g → qq′
1(

1S0) + q′q1(
1S0) . (1.11)

Second, the transverse motion of the valence quark and
antiquark determines the importance of the momentum
distribution of the constituent gluon. It is clear that the
diagrams corresponding to (1.11) must contain contribu-
tions, which, to leading order in αs and z, constitute the
two higher Fock states |qqg〉 of the pion. In the approxima-
tion of collinear light quarks, one thus encounters singular
integrals. These infrared singularities precisely correspond
to the long-distance wave functions describing the higher
Fock states of the pion. In a collinear calculation one hence
needs distribution amplitudes for the higher Fock states
into which the singularities can be absorbed. In our ansatz
we keep the (non-perturbative) transverse motion of the
pion’s valence constituents (quark and antiquark). Then
all integrals are finite. More precisely, gluon momentum
configurations are selected such that the q and q rela-
tive momentum “matches” the one prescribed by the pion
wave function. In this sense one can say that our approach
leads to the dynamical generation of higher Fock compo-
nents. We emphasize that also in this scheme of colour con-
servation the colour-octet contribution is not suppressed
by powers of 1/mc as compared to the colour-singlet one.
This has been discussed by us in [8], see also Sect. 4.

In our previous calculation [8], we employed the col-
linear approximation and simply regularized the singular
integrals through a cut-off, which corresponds to an aver-
age transverse momentum of the quarks inside the pions.
The final results for the colour-octet contribution to the
decay amplitude then basically depended on a single pa-
rameter

κ =
√
αsoft

s f (8)/%2 . (1.12)

Here αsoft
s denotes the coupling of the gluon of the |ccg〉

Fock state to the hard process, and f (8) is the octet de-
cay constant. There is an additional contribution from
terms not singular for % → 0, which is proportional to√
αsoft

s f (8). It is, however, rather small, less than about
10%.

In this work we are going to extend our previous one
by working within the mHSA. This leads to three major
improvements. First, the scale of the coupling constant is
not fixed in the collinear approximation, implying a big
uncertainty. In contrast, the scales of αs are fixed in the
mHSA. Second, in the collinear approximation there is
usually no suppression of the end-point regions of the dis-
tribution amplitude, while these infrared regions are ex-
plicitly suppressed in the mHSA through a Sudakov form
factor. And finally, no ad-hoc regularization of singular
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integrals appearing in the calculation of the octet contri-
bution is necessary. Rather, the momentum distribution
of the octet gluon is linked to the k⊥ dependence of the
pion wave function.

The paper is organized as follows: In Sect. 2 we present
our ansatz for the pion wave function and in Sect. 3 we
introduce the mHSA in the case of the colour-singlet decay
contribution to χcJ → π+π−. In Sect. 4 and Appendix, a
detailed description of the colour-octet contribution and
a discussion of the results for the decay widths are given.
In Sect. 5 we present results for the χcJ decays into pairs
of kaons and etas. Finally, in Sect. 6 we comment on J/ψ
decays, before we end our paper with a summary and some
conclusions (Sect. 7).

2 The pion wave function

We write the pion’s |qq 〉 Fock state, which is the leading
one, in a covariant fashion

|π 〉 =
δij√

3

∫
dxd2k⊥

16π3 Ψπ(x, k⊥)Sπ (2.1)

where the spin wave function is defined as (the pion mass
is neglected throughout)

Sπ =
1√
2
p/γ5 . (2.2)

Integrating the light-cone wave function Ψπ over k⊥, the
transverse momentum of the quark with respect to the
pion momentum, up to a factorization scale µF , one ar-
rives, up to a constant dimensionful factor fπ/(2

√
6), at

the distribution amplitude φπ(x, µF ). The constant factor
plays the role of the configuration space wave function at
the origin; fπ = 130.7 MeV is the usual pion decay con-
stant.

Upon expansion over Gegenbauer polynomials C(3/2)
n ,

the distribution amplitude at a scale µF can be charac-
terized by non-perturbative coefficients Bn (see [1] and
references therein):

φπ(x, µF ) = φAS(x)

[
1 +

∞∑
n=2,4,...

Bn(µ0)
(
αs(µF )
αs(µ0)

)γn

× C(3/2)
n (2x− 1)

]
. (2.3)

The odd expansion terms do not appear since, in the iso-
topic limit, the pion distribution amplitude is symmetric
φπ(x) = φπ(1 − x). In (2.3) αs is the strong coupling con-
stant, and µ0 a typical hadronic scale, 0.5 <∼ µ0

<∼ 1 GeV.
Since the anomalous dimensions γn in (2.3) are positive
fractional numbers increasing with n, higher-order terms
are gradually suppressed and any distribution amplitude
evolves into φAS(x) = 6x(1 − x) asymptotically, i.e. for
ln(Q2/Λ2

QCD) → ∞. The asymptotic (AS) distribution
amplitude itself shows no evolution.

From the investigation of the pion–photon transition
form factor Fγπ(Q2) [4–6,10,11] it follows that the form of
the pion distribution amplitude is very close to the asymp-
totic form. Also recent QCD sum-rule analyses [12] lead
to that result. Hence, all terms in the expansion (2.3) of
the pion distribution amplitude with n ≥ 2 will provide
only small corrections to exclusive observables and it is
legitimate to truncate that expansion at the second term
(note that the frequently used Chernyak–Zhitnitsky dis-
tribution amplitude [13] is given by B2 = 2/3 and Bn = 0
for n ≥ 4) and consider now B2 as the only soft parameter.

In the mHSA we consider the Fourier transform of Ψπ
to transverse coordinate space which, following [4,7], is
written as

Ψ̂π(x,b, µF ) =
fπ

2
√

6
φπ(x, µF ) Σ̂π(x, b, µF ) . (2.4)

The dependence on the transverse separation b, canoni-
cally conjugated to k⊥, is thereby chosen to be of a simple
Gaussian form

Σ̂π(x, b, µF ) = 4π exp
[
−x(1 − x) b2

4 a2
π(µF )

]
. (2.5)

Here, the momentum fraction x and b (or k⊥) refer to
the quark; the antiquark momentum is characterized by
1−x and b (or k⊥) throughout. The pion’s transverse size
parameter aπ = aπ(µF ) is fixed from the process π0 → γγ
[14]. That constraint leads to the closed formula 1/a2

π =
8 (1 + B2(µF ))π2 f2

π under the assumption Bn = 0 for
n ≥ 4 (for the asymptotic distribution amplitude (B2 = 0)
aπ = 0.861 GeV−1 [4]). The scale dependence of aπ is an
approximation sufficient for our purpose. Using (2.1)–(2.5)
we obtain the following expressions for the probability of
finding the pion in its valence Fock state, for the mean
transverse momentum and the mean radius of the qq Fock
state

Pqq =
1
4

1 + 18/7B2
2

1 +B2

〈k2
⊥〉 =

4π2

5
f2
π (1 +B2)

1 − 6/7B2 + 12/7B2
2

1 + 18/7B2
2

R2
qq =

3
8π2 f

−2
π

1 + 3B2 + 54/7B2
2

(1 +B2)2
(2.6)

As shown in Fig. 1, our wave function has appealing fea-
tures as a function of B2. For the asymptotic form of the
distribution amplitude we obtain the values Pqq = 0.25,
〈k2

⊥〉1/2 = 367 MeV and Rqq = 0.42 fm. We remark that
the latter is considerably smaller than the pion’s charge ra-
dius of 0.66 fm [15] to which all the Fock states contribute.
Since Pqq is much smaller than unity, higher Fock states
are important components of the pion and, of course, have
been seen for instance in Drell–Yan dilepton (µ+µ−) pro-
duction in pion–proton collisions [16]. At large Bjorken x,
where the valence quarks dominate, our wave function, for
small B2, is consistent with the valence quark distribution
function as derived in [16] (see [4]). For large negative val-
ues of B2, i.e. at a very low scale, the wave function bears
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Fig. 1. B2 dependence of the probability Pqq (upper left), the
radius R (upper right), r.m.s. transverse momentum 〈k2

⊥〉1/2

(lower left) of the pion’s valence Fock state as well as the shape
of the distribution amplitude (lower right). In the lower right
figure, the solid (dashed) line corresponds to B2 = 0 (−0.2)

resemblance to a constituent wave function with a proba-
bility close to unity and a valence Fock state radius that
is approximately equal to the charge radius of the pion.

In exclusive reactions, contributions from higher Fock
states of the pion are usually neglected since they are
suppressed by inverse powers of the relevant hard scale,
see (1.8). As explained in the introduction, we do not
make use of explicit Fock-state wave functions of the pion.
Rather we generate the contribution corresponding to a
constituent gluon of the pion dynamically. This is achieved
in two steps: (i) the constituent gluon of the χcJ is cou-
pled perturbatively (∝ αsoft

s ) to the hard process; (ii) the
dependence of the momenta of the pion’s valence con-
stituents (i.e. the q, q momenta) on k⊥ is kept. Since it is
the non-zero value of k⊥ that regularizes the propagators
associated with the “would-be” constituent gluon of the
pion, the k⊥ dependence of the wave function of the qq
valence Fock state determines the size of the qqg contri-
bution in the pion.

3 The colour singlet contribution
and the mHSA

In [8] we have analysed the colour singlet contribution to
χcJ → π+π− already within the mHSA. Here, we will give
a more detailed description of the calculation.

The colour singlet components of the χcJ are expressed
in terms of non-relativistic wave functions

|χ(1)
0 〉 =

δij√
3

∫
d3k

16π3M0
Ψ̃

(1)
0 (k)S(1)

0 ,

|χ(1)
2 〉 =

δij√
3

∫
d3k

16π3M2
Ψ̃

(1)
2 (k)S(1)

2 , (3.1)

where the Ψ̃ (1)
J represent reduced wave functions, i.e. full

wave functions with a factor of the relative momentum
Kµ removed from them (Kp = 0 and, for instance, Kµ =
(0,k) in the meson rest frame). The S(1)

J denote the co-
variant spin wave functions

S
(1)
0 =

1√
2

[p/ + M0 + 2K/] K/,

S
(1)
2 =

1√
2

[
(p/ + M2) γρ +

2
M2

[(p/ + M2)Kρ − p/K/γρ]
]

×ερσKσ. (3.2)

The spin wave functions represent an expansion upon pow-
ers of K up to terms of O(K2) [17] 2. The derivative of
the non-relativistic cc wave function at the origin is intro-
duced by

R′
P (0) = ı

16
3
π3/2 √

mc

∫
dkk4

16π3M0
Ψ̃

(1)
0

= ı
√

16πmcf
(1)
0 . (3.3)

In the non-relativistic approximation one has M0 ' M2 '
2mc and the same normalization of the two wave functions
(usually unity) P cc

0 = P cc
2 . In this case one finds Ψ̃2 =√

3Ψ̃0 and the same relation between the two singlet decay
constants f (1)

J .
The starting point of the calculation of the colour sin-

glet decay amplitude within the modified HSA is the con-
volution with respect to the momentum fractions x, y and
transverse separation scales b1,b2 of the two pions

M (1)(χcJ → π+π−) =

−ı 32
√

2π3/2 |R′
P (0)|

3
√

3m7/2
c

σJ

∫ 1

0
dxdy

∫
d2b1

(4π)2
d2b2

(4π)2

× Ψ̂∗
π(y,b2) T̂HJ(x, y,b1,b2) Ψ̂π(x,b1)

× exp[−S(x, y,b1,b2, t1, t2)] , (3.4)

which adapts the method proposed by [3] to our case of
exclusive charmonium decays (σ0 = 1, σ2 =

√
3/2). T̂HJ

is the Fourier transform of the hard-scattering amplitude
THJ with the k⊥-dependence retained

T̂HJ(x, y,b1,b2) =
∫

d2k⊥1

(2π)2
d2k⊥2

(2π)2
THJ(k⊥1,k⊥2)

× exp [−ık⊥1·b1 − ık⊥2·b2] . (3.5)

THJ is to be calculated from the graphs shown in Fig. 2
and reads

THJ(x, y,k⊥1,k⊥2) =
αs(t1)αs(t2)

(g̃2
1 + ıε) (g̃2

2 + ıε)N
(3.6)

×
(

1 +
(−2)J/2

2
(x− y)2

N

)
.

2 The spin wave functions can be written in a more compact
form: S(1)

J = S̃
(1)
J + {S̃(1)

J ,K/}/MJ where S̃(1)
J represents the

O(K) spin wave function
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g

g

1

2

Fig. 2. Feynman graphs for the colour-singlet decay χcJ → π π
(J = 0, 2)

With
K⊥ = k⊥1−k⊥2 (3.7)

the virtualities of the internal quark and the two gluons
are

N = x(1 − y) + (1 − x)y + K2
⊥/(2m

2
c) ,

g̃2
1 = xy − K2

⊥/(4m
2
c) ,

g̃2
2 = (1 − x)(1 − y) − K2

⊥/(4m
2
c) , (3.8)

where a common factor 4m2
c is pulled out. The convo-

lution formula (3.4) involves two independent transverse
separation scales b1 and b2, each associated with one of
the two pions. The bi also provide the factorization scales
µFi = 1/bi (i = 1, 2) of the pion wave functions. Dis-
tinct from these scales are the renormalization scales tj
(j = 1, 2) corresponding to the virtualities of the hard
gluons.

The fact that THJ depends on k⊥1 and k⊥2 only in
the combination K⊥ implies the following result for the
Fourier transform of the hard-scattering amplitude (b̃ ≡
2mcb1)

T̂HJ(x, y,b1,b2) =

4m2
c αs(t21)αs(t22)δ

(2)(b1 − b2)
{ −ı/4

(1 − x)(1 − y) − xy[
H(1)

0 (
√
xy b̃)

x+ y

(
1 +

(−2)j/2(x− y)2

2(x+ y)

)

− H(1)
0 (

√
(1 − x)(1 − y) b̃)
2 − x− y

(
1 +

(−2)j/2(x− y)2

2(2 − x− y)

) ]

+
1
π

K0(
√

(x(1 − y) + (1 − x)y)/2 b̃)
(x+ y)(2 − x− y)

×
(

1 +
(−2)j/2(x− y)2

(x+ y)(2 − x− y)

)

+
1
8π

(−2)j/2(x− y)2

(x+ y)(2 − x− y)

× b̃K1(
√

(x(1 − y) + (1 − x)y)/2 b̃)√
(x(1 − y) + (1 − x)y)/2

}
(3.9)

H(1)
0 and Ki denote Hankel and modified Bessel functions,

respectively. In physical terms the appearance of the δ-
function, which simplifies the numerical work enormously,
means that the two pions emerge from the decay with
identical transverse separations.

The novel ingredient of the mHSA is the Sudakov fac-
tor exp[−S], which takes into account those gluonic radia-
tive corrections not accounted for in the QCD evolution
of the wave function. In next-to-leading-log approximation
the Sudakov exponent reads

S(x, y,b1,b2, t1, t2) = s(x, b1, 2mc) + s(1 − x, b1, 2mc)
+s(y, b2, 2mc) + s(1 − y, b2, 2mc)

− 4
β

log
log(t1/ΛQCD) log(t2/ΛQCD)

log(1/(b1ΛQCD)) log(1/(b2ΛQCD))
, (3.10)

where the function s(x, b,Q), originally derived by Botts
and Sterman [3] and later on slightly improved, can be
found, for instance, in [18]. The last term in (3.10) arises
from a renormalization group transformation from the fac-
torization scales µFi to the renormalization scales tj at
which the hard amplitude T̂H is evaluated. The renormal-
ization scales tj , entering T̂H as the arguments of the two
strong coupling constants αs, are chosen as

t1 = max{4xym2
c , 1/b

2
1, 1/b

2
2} ,

t2 = max{4(1 − x)(1 − y)m2
c , 1/b

2
1, 1/b

2
2} , (3.11)

thus avoiding large logs from higher-order pQCD. In the
limit b1 → 1/ΛQCD the tj may in principle approach ΛQCD
at which the one-loop expression for αs is diverging. Still
the integral appearing in (3.4) is regular since the Su-
dakov factor compensates the αs singularities. Actually
the suppression of the end-point regions is so strong that
the bulk of the perturbative contribution is accumulated
in regions of small values of αs. The physical picture be-
hind the Sudakov suppression is that qq pairs with large
mutual separation tend to radiate so many gluons that it
becomes impossible for the hadronic state to remain intact
and that the exclusive process can take place.

Replacing exp[−S] by 1 and ignoring the transverse
momenta in TH , one finds from (3.4) the colour singlet
decay amplitude within the standard HSA as derived by
Duncan and Mueller [19]. In that approach the renormal-
ization scale is taken as the charm quark mass and cus-
tomarily identified with the factorization scale.

In terms of the amplitude (3.4) the χcJ decay widths
into pions are given by

Γ [χc0 → π+π−] =
1

32πmc

∣∣M(χc0 → π+π−)
∣∣2

Γ [χc2 → π+π−] =
1

240πmc

∣∣M(χc2 → π+π−)
∣∣2 . (3.12)

The results obtained within the mHSA can be cast into
the form

Γ [χcJ → π+π−] =
f4
π

m8
c

|R′
P (0)|2 αs(mc)4 (3.13)

×
∣∣∣a(1)
J + b

(1)
J B2(µ0) + c

(1)
J B2(µ0)2

∣∣∣2 ,
where the coefficients aJ , bJ , and cJ are complex-valued.
Written in the form (3.13) we may then immediately find
the prediction for a distribution amplitude with a given
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value of the expansion coefficient B2 at the scale µ0. It
is still convenient to divide out the fourth power of αs at
the fixed scale mc in (3.13), since the main effect of the
strong coupling is thus made explicit. The actual effective
renormalization scale µR (i.e. the mean value of µR) in
the modified HSA differs from mc and depends on B2 (e.g.
µeffR = 1.15 GeV and hence αs = 0.43 for B2(µ0) = 0).

In the following we will choose as central value R′
P (0)

= 0.22 GeV5/2 and mc = 1.5 GeV, which is consistent
with a global fit of charmonium parameters [20] as well
as results for charmonium radii from potential models
[21]. Moreover, we use the one-loop expression for αs with
ΛQCD = 200 MeV and four light flavours. As we have
demonstrated in [8] by varying the input parameters mc
and R′

P (0), B2, and ΛQCD, the colour-singlet contribution
alone, i.e. a calculation based on the assumption that the
χcJ is a pure cc state, is insufficient to explain the observed
decay rates.

4 The colour octet contribution

Recently, the importance of higher Fock states in under-
standing the production and the inclusive decays of char-
monia has been pointed out [9]. The heavy-quark mass
allows for a systematic expansion of both the quarkonium
state and the hard, short-distance process and, hence, of
the inclusive decay rate or the production cross section.
The expansion parameter is provided by the velocity v of
the heavy quark inside the meson. The crucial observation
is that, for inclusive decays (and also production rates) of
the χcJ , both states in (1.1) contribute at the same order
in v and, hence, the inclusion of the “octet mechanism”,
i.e. the contribution from the |cc8g〉 state, is necessary for
a consistent description. (Without its inclusion the factor-
ization of the decay width into long- and short-distance
factors is spoiled by the presence of infrared-sensitive log-
arithms.) The inclusion of the octet mechanism is also
necessary in exclusive charmonium decays in order to get
a consistent description. This is so because the usual sup-
pression of higher Fock states in exclusive reactions does
not appear for the decay of P -wave charmonium: it is com-
pensated for by the P -wave nature of the cc1 Fock state
[8].

As a consequence of employing the collinear approx-
imation we encountered in [8] a number of singular in-
tegrals, which we regularized by a parameter % related
to the (neglected) transverse momentum of the internal
quarks and gluons. However, within the modified HSA
where the dependence on the partonic transverse momenta
is taken into account, all integrals are finite and there is
no longer any need for the parameter %. Apart from that,
the modified HSA also provides an explicit prescription
for the renormalization scales entering the strong coupling
constant such that αs is no longer a free parameter. Al-
together, the modified HSA not only guarantees a self-
consistent and thus reliable calculation of the perturbative
contribution, it also helps in the present case to diminish
uncertainties of the collinear approximation.

As explained in the introduction, the Fock-state gluon
has a typical momentum fraction z ∼ mcv

2/2mc of the
χcJ momentum. We treat z as a small number. We have
checked that the results are nearly z-independent for 0.1 <
z < 0.3. Hence the |ccg〉 wave function Φ

(8)
J of (1.6) can

be taken as exhibiting a δ-function-like peak at the value
z3 = z. Moreover, in our results we will neglect all terms of
order z3 and higher. This is in line with the non-relativistic
expansion of the charmonium decay rate since z scales as
v2. Apart from z, the only free parameter on the charmo-
nium side is f (8), the colour octet wave function at the
origin.

The details of the calculation of the colour octet con-
tribution within the modified HSA can be found in the
Appendix. We have divided the diagrams contributing to
the colour octet decay into eleven groups, numbered by
the index i. The contribution of each group is of the form
(3.4). Furthermore, we have introduced renormalization
scales tij , which are determined by the virtualities of the
internal quark and gluon lines (see Appendix) and depend
non-trivially on the integration variables. As already dis-
cussed in Sect. 3 we may simply evaluate the running cou-
pling constant by its one-loop expression at the scales tij
because its singularity (to be reached for b1 or b2 → ΛQCD)
is compensated by the Sudakov factor.

We now want to direct the reader’s attention to the
question of gauge invariance. Treating the problems as
presented above, the results we obtain are gauge invariant
to order z2 (with z being the fraction of the χcJ momen-
tum carried by the valence gluon), which is sufficient, be-
cause we neglect terms of O(z3) in our results. Eventual
violations of gauge-invariance at order z3 may be traced
back to the general problem to describe a constituent
within the parton model. This conjecture is supported
by the following observation we made: if one changes the
c-quark propagator mass in groups 8–10 from the usual
value mc to (1−z)mc, we end up with completely gauge-
invariant results. Admittedly, this choice is by no means
mandatory and we do not apply it actually, but it reveals
that the violations of gauge invariance to O(z3) are related
to the neglect of binding effects for which that particular
choice of the mass in the c-quark propagators seems to
compensate for.

In order to combine colour singlet and octet contribu-
tion we expand the colour-octet decay amplitude (A.1) in
a fashion analogous to the colour singlet case:

1√
λJπmc

1
|R′

p(0) |
(

m4
c

αs(mc) fπ

)2

M (8)(χcJ → π+π−)

=
(
a
(8)
J + b

(8)
J B2 + c

(8)
J B2

2

)
, (4.1)

where λ0 = 32 and λ2 = 240. Thus, to obtain the sum of
singlet and octet contributions, we simply have to add the
coefficients, e.g. a(1+8)

J = a
(1)
J + a

(8)
J .

First, we determine a value for the unknown decay con-
stant f (8), which is contained in the coefficients a(8)

J , b(8)J
and c(8)J , from a fit of our predictions to the experimental
data on the decay widths, using the asymptotic pion wave
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function (B2 = 0). We obtain

f (8) = 1.46 × 10−3 GeV2 , (4.2)

which is larger than the result estimated in [8]. This is
mainly a consequence of the treatment of the strong cou-
pling constant αs. In [8] we have chosen 0.45 for the cou-
pling of the two hard gluons and assumed αsoft

s ≈ π for
the coupling of the soft χcJ Fock-state gluon to the hard
process: αs(t1)αs(t2)

√
αs(t3) = 0.452√π ≈ 0.36. In the

present analysis based on the mHSA we may extract ef-
fective values for the strong coupling constant. We distin-
guish the hard αs, evaluated at the scales ti1 and ti2 from
the soft one at ti3. Using the asymptotic form of the pion
distribution amplitude we obtain

(αhard
s )2(αsoft

s )1/2 =
0.4922 × √

0.557 = 0.181 in χ0 → π+π−

0.5092 × √
0.566 = 0.195 in χ2 → π+π− . (4.3)

The smaller values of the products of strong couplings
have to be compensated for by a larger value of f (8). Ob-
serve that the coupling αsoft

s of the constituent gluon of the
χcJ is only slightly larger than the coupling of the “hard”
gluons. This is caused by two effects: (i) the dynamical
setting of the scales makes αhard

s larger than the naive,
collinear estimate αhard

s = αhard
s (mc); (ii) the Sudakov

factor is effective enough to suppress the soft phase-space
regions, in which αsoft

s would become large. The fact that
this coupling is not probed at large values gives us confi-
dence in our perturbative treatment of the χcJ constituent
gluon.

The question remains whether the result (4.2) is phys-
ically sensible or not. Therefore, we are going to estimate
the probability Pccg to find the χcJ in the colour-octet
state from the following examplary parametrization for
the ccg wave function

Ψ
(8)
0 (zi,k⊥i) = Nz1z2z

2
3

× exp
{−2a2

χm
2
c

[
(z3 − z)2 + (z1 − z2)2

]}
× exp

{
−a2

χ

∑
k2

⊥i
}
, (4.4)

This ansatz combines the known asymptotic behaviour of
a distribution amplitude for a qqg Fock state with a mass-
dependent exponential and a Gaussian k⊥ dependence in
analogy to the Bauer–Stech–Wirbel parametrization of
charmed-meson wave functions [22]. The mass-dependent
exponential guarantees a pronounced peak of the distribu-
tion amplitude at z1 ' z2 ' (1− z)/2. The δ-function-like
distribution amplitude used in the estimate of the colour-
octet contribution appears as the peaking approximation
to this function. Since the ccg Fock state is an S-wave state
we assume its radius to be equal to that of the S-state
charmonia, namely 0.42 fm [21]. In this case the trans-
verse size parameter aχ takes the value 1.23 GeV−1. The
probability of the colour-octet Fock state is then found to
be

Pccg =
(
f (8)/2.1 × 10−3 GeV2

)2
. (4.5)

Table 1. Contributions to aJ (singlet, octet, and their sum
for f (8) = 1.46 × 10−3 GeV2 )

J = 0 J = 2

a
(1)
J 23.36 + 14.67 ı 5.14 + 3.42 ı

a
(8)
J 33.90 + 15.89 ı 11.60 + 4.12 ı

a
(1+8)
J 57.26 + 30.56 ı 16.74 + 7.54 ı

Table 2. Results for the χcJ decay widths into pions (f (8) =
1.46 × 10−3 GeV2 ; B2 = 0) in comparison with experimental
data. The BES result for Γ [χc0 → π+π−] is evaluated with the
BES result for the total width. In the other cases the PDG
average values for the total widths are used

PDG [23] BES [24]

Γ [χc0 → π+π−] [keV] 45.4 105 ± 47 64 ± 21

Γ [χc2 → π+π−] [keV] 3.64 3.8 ± 2.0 3.04 ± 0.73

Γ [χc0 → π0 π0 ] [keV] 23.5 43 ± 18

Γ [χc2 → π0 π0 ] [keV] 1.93 2.2 ± 0.6

This relation is obtained with z = 0.15; it is however prac-
tically independent of the exact value of z. We stress again
that the ansatz (4.4) is only an example for a possible wave
function. Thus, our result of about 1/2 for Pccg (from (4.2)
in (4.5)) is not in apparent disagreement with expectation
and we may conclude that the result (4.2) corresponds to
a large but not unphysical value for Pccg.

Using the value (4.2) the coefficients aJ add up as
shown in Table 1. Our results for the decay widths are
presented in Table 2. Note that in the colour octet decay
amplitude there are terms contributing to decays into neu-
tral pions only (see group 11 in Fig. 5). We may thus find
deviations from 1/2 for the ratio of the decay width into
neutral pions over that into charged pions. In experiment
as well as in our calculation these deviations are found to
be small. As discussed before we perform a peaking ap-
proximation in the momentum fraction z carried by the
χcJ Fock-state gluon. As in [8] we set z = 0.15. We have
checked that our results are only weakly dependent on the
actual value of z within the range between 0.1 and 0.2 and
all our conclusions remain valid.

In Fig. 3 we sketch the dependence of the χc0 → π+π−
decay width on the expansion parameter B2 in the allowed
B2 range [8]. We dispense with a corresponding plot for
χc2 since its width is found to depend on B2 in the same
way as the width of χc0 → π+π−. As can be seen from
Fig. 3 the dependence on B2 is quite strong, i.e. pushing
B2 from the central value zero to its upper limit B2 = 0.1
doubles the width. If the octet decay constant is deter-
mined by some other method, the χcJ → ππ decays con-
stitute a severe test of the pion distribution amplitude.

We conclude from these considerations that it is pos-
sible to explain the experimental data on χcJ → π+π−
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Fig. 3. Dependence of the prediction for the χc0 → π+π−

decay width on the expansion parameter B2 of the pion distri-
bution amplitude

within a perturbative approach, using the asymptotic form
of the pion distribution amplitude, provided colour-octet
contributions are included. The numerical results of our
new calculation within the mHSA are similar to our old
ones [8], obtained within the collinear approximation. The
new calculation within the mHSA improves, however, the
old one in various respects: (i) the scales of the coupling
constant are determined, (ii) soft phase-space regions are
suppressed, and (iii) all propagators associated with the
constituent gluon are regularized through the non-zero
transverse momenta of the pion’s constituents.

5 χcJ decays into other light pseudoscalars

The considerations made so far for the case of the pion can
straightforwardly be generalized to the decays of χcJ into
the other light pseudoscalar mesons, e.g. etas and kaons.
The η meson is a linear combination of an SU(3) octet
and singlet component

| η 〉 = cos θP | η8 〉 − sin θP | η1 〉 . (5.1)

For the wave functions of η1 and η8 we follow [4] and
make the same ansatz (2.1)–(2.5) for it as for the pion
(with aη = aπ). The decay constants fη1 and fη8 as well
as the mixing angle θP have been determined from a fit
to the η–γ and η′–γ transition form-factor data [4]:

fη8 = 145 ± 3 MeV; fη1 = 136 ± 10 MeV;

θP = −18◦ ± 2◦ . (5.2)

Since the strong interaction is flavour-blind, the hard scat-
tering amplitudes for the decays of χcJ into η1 and η8
pairs equal both that of the π0π0 channel (with group 11
included), i.e. the only modification with respect to the
pion case is to replace f2

π by cos2 θP f2
η8 + sin2 θ2P f

2
η1 =

(144 MeV)2 in (3.13). In addition we take into account
the η mass in the phase space factor, [1 −m2

η/m
2
c ]

1/2, of
the decay width (3.12), (3.13). Using, as in [4], Bη2 = 0
for the η distribution amplitude, we obtain the χcJ de-
cay widths into pairs of etas as quoted in Table 3. With
that asymptotic form of the η distribution amplitude, fair

Table 3. Results for the χcJ decay widths into kaons and
etas in comparison with experimental data (f (8) = 1.46 ×
10−3 GeV2 , BK

1 = 0)

Γ [χcJ → K+K−] [keV] Γ [χcJ → ηη] [keV]

J = 0 J = 2 J = 0 J = 2

BK
2 = −0.176 22.4 1.68

BK
2 = −0.100 38.6 2.89

Bη
2 = −0.036 24.0 1.91

Bη
2 = 0.000 32.7 2.66

PDG [23] 99 ± 49 3.0 ± 2.2 35 ± 20 1.6 ± 1.0

BES [24] 52 ± 17 1.04 ± 0.43

agreement with the data is achieved. On the other hand, a
fit of Bη to the Γ [χcJ → ηη] data yields a value of -0.036
for it and leads to a slightly better agreement with the
data.

The kaon state is also written in the form (2.1) - (2.5),
with fπ exchanged for fK = 157.8 MeV. Again in order to
simplify matters, we assume aK = aπ. Since the kaon con-
sists of up and strange quarks with different masses one
may no longer expect the kaon distribution amplitude φK
to be symmetric under exchange x ↔ 1 − x. Therefore,
one has to include in the expansion (2.3) also the anti-
symmetric terms

φK(x, µF ) = φAS(x)

[
1 +

∞∑
n=1,2,...

BKn (µ0)
(
αs(µF )
αs(µ0)

)γn

C(3/2)
n (2x− 1)

]
, (5.3)

where e.g. the anomalous dimension γ1 is 32/81 [1].
Information on the antisymmetric part of the kaon dis-

tribution amplitude may be extracted from the valence
quark distribution functions of the kaon at large x, where
the contributions from Fock components higher than the
valence Fock state are negligible. In particular the ratio
of strange antiquarks over up quarks is sensitive to the
amount of asymmetry in the kaon distribution amplitude.
Unlike the cases of the nucleon and the pion, no systematic
model-independent analysis of the kaon quark distribution
functions exists so far. From calculations of the kaon’s va-
lence quark distributions within the Nambu–Jona–Lasinio
model [25], there is evidence that at x ≈ 0.8 there are
about twice as many strange antiquarks as u quarks in-
side the K+. Truncating (5.3) at n = 2 one sees that such
a ratio can be accommodated by a coefficient BK1 of order
−0.1. About the same value of BK1 is found in an instanton
model [26].

Due to the symmetry of the hard scattering ampli-
tude for χcJ → K+K− under the simultaneous exchanges
x ↔ 1 − x and y ↔ 1 − y, BK1 will enter the decay am-
plitude only quadratically, i.e. in (3.13) and (4.1) the only
additional terms are d(c)

J (BK1 )2. For |BK1 | ≤ 0.1 the con-
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tributions from the antisymmetric part of the distribution
amplitude therefore provide only tiny corrections to the
decay of χcJ into kaons and can be neglected3. Hence, the
hard scattering amplitude for χcJ decays into K+K− has
the same form as the one for the decays into charged pions.
A inspection of Table 3 reveals that already a small nega-
tive BK2 value of the order of −0.1 to −0.2 is sufficient to
obtain fair agreement between the phase-space-corrected
mHSA result and the available data. Admittedly, a pre-
cise value of BK2 cannot be determined at present because
the BES data and the PDG average values only agree
within large errors; we therefore present results for two
different BK2 values in Table 3. Despite this uncertainty it
seems that the kaon distribution amplitude is somewhat
narrower than the asymptotic one (which is favoured for
the pion). This finding appears to be plausible considering
the comparatively large strange quark mass4. For BK1 = 0,
BK2 = −0.1 we obtain from (2.6) the following properties
of the kaon’s valence Fock state: probability 0.37, r.m.s.
transverse momentum 381 MeV, and radius 0.44 fm.

6 Comments on J/ψ → π+π− decays

It has long been known that there exists a problem with
the pion form factor. The value sFπ = 0.95 ± 0.08 GeV2

at s = M2
J/ψ deduced from the decay J/ψ → π+π− is

much larger than the space-like one at the equivalent Q2

scale (Q2 = −s): Q2Fπ = 0.35 ± 0.10 GeV2. Admittedly,
the space-like data [27] suffer from large systematical er-
rors. The discrepancy is even more severe for ψ(2S) → ππ
(sFπ = 2.67 ± 0.87 GeV2). Unfortunately, the data on the
time-like form factor measured in e+e− → π+π− [28], suf-
fer from low statistics and are inconclusive. While, within
the large experimental errors, these data are in agreement
with the value for the time-like pion form factor as ex-
tracted from J/ψ → ππ, a much smaller value (close to
that of the space-like form factor) cannot be excluded.
These two differences between the time-like and space-
like pion form factors pose a true challenge for the HSA.
Within the standard HSA there is no difference between
the form factor in the two regions (except for interchang-
ing Q2 with −s). While possible explanations for a larger
value of the form factor in the time-like region than in
the space-like one within the mHSA have come up [29],
the large values of the pion form factor extracted from
ψ(nS) → ππ still lack a decent explanation. Here we want
to propose a solution to this puzzle.

The one-to-one correspondence between sFπ and
J/ψ → ππ is based on the conventional assumption that
in a leading-twist analysis the only contribution to J/ψ →
ππ comes from the electromagnetic process with one in-
termediate photon. The hard process is O(α2

sα
2
em). Purely

hadronic processes, seemingly larger by factors αps/α
2
em,

are usually supposed to be suppressed by powers of
ΛQCD/mc. Moreover, the rate for the O(α6

s) contribution

3 This was already observed by the authors of [13]
4 Remember that the non-relativistic case of infinitely heavy

quarks is described by a δ-function-like distribution amplitude

via three intermediate gluons is zero if the light-quark
masses are assumed to be zero [30].

Recent developments [9] in the theory of heavy quarko-
nia have shown that the appropriate expansion parame-
ter is not ΛQCD/mc, as is the case for light systems, but
rather the velocity v of the heavy quark (or antiquark)
in the bound state. The dominant Fock state of the J/ψ
is |(cc)1(3S1)〉, a colour-singlet cc pair in a spin-triplet S-
wave state. This state decays to a pair of pions via a vir-
tual photon and its rate is of order α2

emα
2
sv

3. (The factor
v3 arises from the squared wave function). Contributions
from higher Fock states are suppressed by powers of v and
αsoft
s . Factors of v give the probability to find these soft

gluons in the quarkonium, while factors of αsoft
s are asso-

ciated with the coupling of the soft gluons to the decay
process.

Corrections to the electromagnetic decay of the va-
lence Fock state first arise at relative order v4 from the
|(cc)8(3S1)gg〉 Fock state and the |(cc)8(3PJ)g〉 Fock state.
In both cases the hard process is of order α4

s, while the
soft part scales as v3(v2αsoft

s )2 (v3v2(v2αsoft
s )) for the for-

mer (latter) Fock state. (The former contains two soft
gluons, the latter only one, but it is a P -wave annihi-
lation. For comparison, in the conventional HSA (all glu-
ons are purely perturbative and the valence Fock state
cc1(3S1) is the only relevant one), the diagrams corre-
sponding to |(cc)8(3S1)gg〉 are of order α8

s. The rate for
the O(α6

s) diagrams corresponding to |(cc)8(3PJ)g〉 van-
ishes for mq → 0.) Since v2 ∼ 0.3 for charmonium, these
contributions from the higher Fock states can easily be
as large as (or even larger than) the electromagnetic de-
cay of the valence Fock state. From these considerations
it should be clear that the standard extraction of the pion
form factor from J/ψ → ππ is dubious.

7 Summary

In this paper we have presented a detailed analysis of χcJ
decays into light pseudoscalar mesons within the frame-
work of the modified HSA. For sufficiently heavy-quark
masses, quarkonia are almost non-relativistic, and correc-
tions to the quark-potential model description can be or-
ganized into an expansion in v, the typical velocity of the
charm quark in the meson. Recently it has been shown [9]
that, for inclusive decays, the contribution from the higher
Fock state |cc8(3S1)g〉 is not suppressed by v with respect
to the contribution from the valence Fock state |cc1(3PJ)〉
(i.e. the quark-potential-model Fock state). Here we found
a similar situation for exclusive χcJ decays: the colour-
octet contribution (i.e. the one arising from the higher
Fock state |ccg〉 with cc in a colour-octet state) is not sup-
pressed by powers of either v or 1/mc. Hence the usual
suppression of higher Fock states for exclusive reactions
does not hold in this case.

Owing to the v-expansion, the wave function of the
|ccg〉 Fock state of the χcJ is, to leading order in v, com-
pletely fixed apart from a single long-distance parame-
ter, namely the colour-octet decay constant f (8). However,
in our approach f (8) remains the only parameter of the
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Table 4. Decay widths in eV for P -wave bottomonia for two values of f (8) (mb = 4.5GeV;
R′

P (0) = 0.7GeV5/2)

f (8) [ GeV2 ] Γ [χb0 → π+π−] Γ [χb2 → π+π−] Γ [χb0 → π0π0] Γ [χb2 → π0π0]

1.46 × 10−3 20.6 1.69 10.5 0.88

5 × 10−3 152 13.8 78.2 7.27

colour-octet contribution to the decay rate χcJ → MM
(M = π, K, η). We have given arguments against the use
of higher Fock states for the pion. Therefore we conserve
colour (an issue irrelevant for inclusive decays) by coupling
the constituent gluon of the |ccg〉 Fock state of the χcJ to
the hard process. This becomes a sensible proceeding in
the mHSA. The two reasons for this are as follows.

First, we keep the transverse momentum of the pion’s
valence-quark momenta. In this way, no singular integrals
occur. The regularization depends on the pion wave func-
tion, but the latter is quite well constrained from an analy-
sis of the photon–pion transition form factor in the mHSA.
Secondly, incorporation of a Sudakov factor ensures that
the coupling αs of the constituent gluon to the hard pro-
cess never becomes large. The coupling is evaluated dy-
namically and the Sudakov factor suppresses soft phase-
space regions where the scale of αs would become so small
that a perturbative treatment were no longer justified.

In our estimates of the decay rates χcJ → ππ, KK,
and ηη, the colour-octet contribution turned out to be of
great importance in order to establish contact with the
experimental data. The value of the single long-distance
parameter f (8) came out very reasonable, consistent with
the expectation from v scaling. Since the |QQg〉 Fock state
of χQJ is neither v- nor power-suppressed, we expect also
a large fraction of the χbJ → ππ widths to originate from
the |bbg〉 state. This is indeed the case in our approach.
Predictions for bottomonium decays are quoted in Table 4.
At present there is no data to compare with.

In the case of exclusive J/ψ decays, contributions from
higher Fock states (and, hence, from colour-octet contri-
butions) first start at O(v4) and are often also power-
suppressed. They can therefore be neglected in most re-
actions, e.g. in baryon–antibaryon decay channels, which
are dominated by the contributions from cc annihilations
through three gluons. Indeed, a recent calculation [31]
along the lines proposed here provides good results for
many BB channels. We have pointed out that the situa-
tion is different for the J/ψ decay into two pions. This
decay is customarily assumed to be dominated by the
electromagnetic decay of cc annihilation into a photon,
since the three-gluon contributions cancel to zero. We have
described the dominant hadronic decay channels arising
from higher Fock states. These are likely to be responsible
— at least partially — for the large difference between
the value of the pion form factor in the space-like region
and its value deduced from J/ψ decays into pions. Our
considerations may also have consequences for the decays
ψ(nS) → ρπ and for the process γγ → ππ where, within

the HSA, a substantial part of the cross-section is related
to the pion form factor in the time-like region.

Appendix: Calculation of the colour-octet
contribution within the mHSA

The colour-octet decay amplitude can be written in a form
similar to (3.4) :

M (8)(χcJ → π+π−) =∫ 1

0
dxdy

∫
d2b1

4π
d2b2

4π
Ψ̂∗
π(y,b2) Ψ̂π(x,b1) (A.1)

×
10∑
i=1

T̂
(J)
i (x, y,b1,b2) exp [−S(x, y,b1,b2, ti1, ti2)] .

The sum runs over ten groups of graphs (see Figs. 4 and 5)
in the case of charged pions. For the π0π0 final state the
graphs of group 11 contribute as well. Each group contains
a certain number of Feynman graphs, which differ only by
permutations of either the two-pion states, the light quark
and antiquark lines, or the attachment of the gluons from
the charmonium side. Note that for those Feynman graphs
where the cc pair annihilates into one gluon, the momen-
tum fractions of c and c do not appear explicitly and hence
only the momentum fraction z carried by the constituent
gluon remains. For those graphs where cc annihilate into
two gluons (groups 8–10) we assume that c and c carry
each a momentum fraction (1 − z)/2 of the charmonium
momentum.

In (A.1) the T̂ (J)
i denote the Fourier-transformed hard

scattering amplitude of group i for the colour-octet de-
cay of the χcJ in transverse coordinate space. The hard
scattering amplitudes T (J)

i are given in Figs. 4 and 5.
In the expressions for the T (J)

i given in Figs. 4 and 5,
we absorb the combinatorial and colour factors as well as
the colour-octet χcJ decay constant and αs into the factors

κ0 =
64π5/2 f (8)

9
√

6
m3

c αs(ti1)αs(ti2)
√
αs(ti3) ,

κ2 =
64π5/2 f (8)

9
√

2
m3

c αs(ti1)αs(ti2)
√
αs(ti3) . (A.2)

The renormalization scales tij appearing in the various
amplitudes, depend on the kinematics of the specific
group. The virtualities of the two hard internal gluons
connecting the external lines determine the renormaliza-
tion scales ti1 and ti2, respectively. In analogy to (3.11)
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Fig. 4. Overview on groups 1 – 5 of Feynman graphs contributing to the color-octet decay amplitude (M ≡ 2mc,
x1 ≡ x, x2 ≡ 1 − x, K⊥ is defined in (3.7))
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Fig. 5. Overview on groups 6 – 11 of Feynman graphs contributing to the color-octet decay amplitude (M ≡ 2mc,
x1 ≡ x, x2 ≡ 1 − x, K⊥ is defined in (3.7))
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these scales are chosen as the maximum of 1/b21, 1/b22 and
the corresponding gluon virtuality (at k⊥1 = k⊥2 = 0).
In addition there is the constituent gluon from the χcJ
colour-octet Fock state coupling to the hard part. The
relevant scale ti3 is chosen as the maximum of 1/b21, 1/b22
and the virtuality of the adjacent internal quark or gluon
line (at k⊥1 = k⊥2 = 0).

We take into account the k⊥ dependence only in the
denominators of the T

(J)
i , i.e. we neglect corrections of

O(k2
⊥/m

2
c). In the collinear approximation we employed in

[8], propagator singularities are touched within the range
of the momentum fraction integrals which cannot be reg-
ularized in the usual way with the ıε prescription. The
difficulty arises from the gluon propagator g5 (see Figs. 4
and 5). In [8] we regularized the corresponding integrals
by replacing K⊥ in g2

5 through the r.m.s. transverse mo-
mentum 〈k2

⊥〉1/2 of the quarks inside the pions. Here, in
the modified mHSA all integrals appearing in (A.1) are
either finite or can be regularized with the ıε prescription.
In some of the T (J)

i there are x-dependent terms in the
numerators, which will cancel some of the propagator de-
nominators if the transverse momentum is neglected. In
these cases we actually let these terms cancel, thus avoid-
ing some singularities. This procedure is equivalent to ne-
glecting O(k2

⊥/m
2
c) terms. It is applied, for instance, in

group 2 through which only the dependence on the trans-
verse momentum difference K⊥ (see (3.7)) is left in T (J)

2 .
As already encountered in the case of the colour singlet
case the corresponding Fourier-transformed hard ampli-
tude T̂ (J)

2 then includes a δ-function δ(2)(b1−b2). Similar
situations occur in group 4 and in parts of groups 1, 3, 5
and 8.

The Fourier transform of propagators regularizable
with the ıε prescription read

∫
d2k⊥
(2π)2

exp[−ık⊥·b]
s− k2

⊥ + ıε
=


− ı

4 H(1)
0 (

√
sb) for s > 0

− 1
2π K0(

√−sb) for s < 0
.

(A.3)
Note that the inclusion of k⊥ weakens the 1/s singularity
to a logarithmic one. In the general case of two indepen-
dent b-variables the integration over the relative angle
θ between b1 and b2 can be analytically performed by
means Graf’s theorem. For instance,∫ 2π

0
dθH(1)

0 (
√
s |b1 − b2|)

=
∞∑

l=−∞

∫ 2π

0
dθ cos(lθ) H(1)

l (
√
s max(b1, b2))

×Jl(
√
s min(b1, b2))

= 2πH(1)
0 (

√
s max(b1, b2)) J0(

√
s min(b1, b2)) . (A.4)

In most of the cases one thus finds analytical expressions
for the T̂ (J)

i , except for group 1, where T (J)
1 depends on

k⊥1, k⊥2 and K⊥. Here, T̂ (J)
1 includes the integral∫ ∞

0
b0db0 H(1)

0 (
√

(z−x)(z−y) + ıεMb0)

× H(1)
0 (

√
z(z−x) + ıεM max(b1, b0))

× H(1)
0 (

√
(1−z)(z−y) + ıεM max(b2, b0))

× J0(
√
z(z−x) + ıεM min(b1, b0))

× J0(
√

(1−z)(z−y) + ıεM min(b2, b0)). (A.5)

To proceed we split the range of integration at some large
value b̄0 of b0. Actually b̄0 is chosen in such a way that all
arguments of the Bessel functions H(1)

0 and J0 are greater
than 2 for b̄0 ≥ b0, through which all Bessel functions can
be replaced by their asymptotic expressions and (A.5) is
solved. For the remainder of the integration region (b̄0 ≤
b0) the integral is evaluated numerically.
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